If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+58y+16=0
a = 7; b = 58; c = +16;
Δ = b2-4ac
Δ = 582-4·7·16
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-54}{2*7}=\frac{-112}{14} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+54}{2*7}=\frac{-4}{14} =-2/7 $
| 20x+x=70 | | x3−6x^2−16x+96=0 | | 160+.25m=287.50 | | 4x-8+6x-3=12x-18 | | 2(x+5)^2=40 | | 1/2x+7=10+1/3x | | x3−6x2−16x+96=0 | | -5(-3x+4)+3x+3=55 | | Y=2(x-1)(x-6) | | 2/3(9s-3/2)=s(.45=5)+1.2 | | 54-x=8 | | 8/9(54x-36+2=-3/4(-40+16x)+90x | | -3(6x-7)+2=-18x+23 | | 5^2x-3=1^1 | | X+x=6+x | | 4(x+)=24 | | 3(-x-2)+5x-5=-5 | | n-3-12=9 | | 4x+2=-6+2x+14 | | 1.9=3x-6.2 | | 4.8(x)=1.2 | | 6x-9+6=12 | | 3x-24=2x+32 | | 2n/−35=5 | | (z+9)^2=-36 | | 2p+4+(2p*3)/45=p | | 4-2(x-5)=3x-4(x+2) | | 2.5=5x-7.1 | | -2(-5x-4)+2x-2=114 | | -5(3x+6)=-3)4x-2) | | 5y-3(y-7)=-11 | | 5-6(x+3)=4x-8 |